On the pointwise multiplication in Besov and Lizorkin-Triebel spaces

نویسندگان

  • Douadi Drihem
  • Madani Moussai
چکیده

where F and B, with three indices, will denote the Lizorkin-Triebel space Fs p,q and the Besov space Bp,q, respectively. The different embeddings obtained here are under certain restrictions on the parameters. In this introduction, we will recall the definition of some spaces and some necessary tools. In Sections 2 and 3, we give the first contribution of this work. The theorems of Section 2 will treat the case F · B↩ F where the first theorem is a generalization of the results of Franke [4, Section 3.2, Theorem 1, Section 3.4, Corollary 1] and Marschall [7]. The second theorem is in the sense of Johnsen’s works (see [5]). Section 3 will contain a treatment of the embeddings of the types F · F↩ F and B · B↩ B which presents an improvement of [3]. In the sense of [5, Theorems 6.5, 6.11], some limit cases are considered in Section 4, which constitute the second contribution of this paper. Section 5 is an application of our results to the continuity of pseudodifferential operators on Lizorkin-Triebel spaces. We will work on the Euclidean space Rn. If f ∈ , the Fourier transform is defined by the formula

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homogeneity property of Besov and Triebel-Lizorkin spaces

We consider the classical Besov and Triebel-Lizorkin spaces defined via differences and prove a homogeneity property for functions with bounded support in the frame of these spaces. As the proof is based on compact embeddings between the studied function spaces we present also some results on the entropy numbers of these embeddings. Moreover, we derive some applications in terms of pointwise mu...

متن کامل

Change of variable in spaces of mixed smoothness and numerical integration of multivariate functions on the unit cube

In a recent article by two of the present authors it turned out that Frolov’s cubature formulae are optimal and universal for various settings (Besov-Triebel-Lizorkin spaces) of functions with dominating mixed smoothness. Those cubature formulae go well together with functions supported inside the unit cube [0, 1]. The question for the optimal numerical integration of multivariate functions wit...

متن کامل

New Properties of Besov and Triebel-Lizorkin Spaces on RD-Spaces

An RD-space X is a space of homogeneous type in the sense of Coifman and Weiss with the additional property that a reverse doubling property holds in X . In this paper, the authors first give several equivalent characterizations of RD-spaces and show that the definitions of spaces of test functions on X are independent of the choice of the regularity ǫ ∈ (0, 1); as a result of this, the Besov a...

متن کامل

Frame Characterizations of Besov and Triebel–lizorkin Spaces on Spaces of Homogeneous Type and Their Applications

The author first establishes the frame characterizations of Besov and Triebel–Lizorkin spaces on spaces of homogeneous type. As applications, the author then obtains some estimates of entropy numbers for the compact embeddings between Besov spaces or between Triebel–Lizorkin spaces. Moreover, some real interpolation theorems on these spaces are also established by using these frame characteriza...

متن کامل

Decomposition of Weighted Triebel-lizorkin and Besov Spaces on the Ball

Weighted Triebel-Lizorkin and Besov spaces on the unit ball Bd in Rd with weights wμ(x) = (1 − |x|2)μ−1/2, μ ≥ 0, are introduced and explored. A decomposition scheme is developed in terms of almost exponentially localized polynomial elements (needlets) {φξ}, {ψξ} and it is shown that the membership of a distribution to the weighted Triebel-Lizorkin or Besov spaces can be determined by the size ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2006  شماره 

صفحات  -

تاریخ انتشار 2006